Announcements

1) Math Major Pizza/t-shirt event in Math Library (CB 2047) from noon to 1:30 on Monday
2) Exam 1 Thursday next week, review on Tuesday

Linear Dependence: Two functions $f$ and $g$, defined on an interval I, are said to be linearly dependent if there is a real number $C$ such that

$$
f(x)=c g(x)
$$

for all $X$ in $I$.

Example 1: (distinct roots)

Solve

$$
\begin{aligned}
& y^{\prime \prime}(t)+y^{\prime}(t)-6 y(t)=0, \\
& y(0)=1, y^{\prime}(0)=0 .
\end{aligned}
$$

Suppose $y(t)=e^{r t}$ for some $r$.

Then again,

$$
\begin{aligned}
y^{\prime}(t) & =r e^{r t}, \\
y^{\prime \prime}(t) & =r e^{2} e^{r t} \text {, and we }
\end{aligned}
$$

get

$$
r^{2} e^{r t}+r e^{r t}-6 e^{r t}=0
$$

Cancel $e^{r t}$ to get

$$
r^{2}+r-6=0
$$

$$
\begin{aligned}
& \left(\begin{array}{c}
\frac{e^{r t}\left(r^{2}+r-6\right)}{e^{r t}} \\
\rightarrow e^{r t} \\
\rightarrow r^{2}+r-6=0
\end{array}\right) \\
& (r+3)(r-2)=0 \\
& r=-3,2 \\
& f_{1}(t)=e^{-3 t} \text { and } f_{2}(t)=e^{2 t}
\end{aligned}
$$ are solutions

We get that

$$
C_{1} e^{-3 t}+C_{2} e^{2 t}=y(t)
$$

is a solution for all constants $C_{1}, C_{2}$.

Use initial conditions to determine $C_{1}, C_{2}$.

$$
\begin{aligned}
& y(0)=1, \text { so } \\
& c_{1}+c_{2}=1
\end{aligned}
$$

Since $y^{\prime}(0)=0$,

$$
\left.\begin{array}{rl}
0 & =\left(C_{1} e^{-3 t}+C_{2} e^{2 t}\right)^{\prime} \\
\text { at } t=0
\end{array}\right] \begin{gathered}
\left.-3 C_{1} e^{-3 t}+2 C_{2} e^{2 t}\right) \\
a t t=0 \\
= \\
=-3 C_{1}+2 C_{2}
\end{gathered}
$$

We get the equations

$$
\begin{gathered}
C_{1}+C_{2}=1 \\
-3 C_{1}+2 C_{2}=0
\end{gathered}
$$

Substituting $C_{1}=1-C_{2}$ into the second equation,

$$
-3+3 c_{2}+2 c_{2}=0
$$

so $C_{2}=3 / 5$ and

$$
C_{1}=1-C_{2}=2 / 5
$$

Final answor:

$$
y(t)=\frac{2}{5} e^{-3 t}+\frac{3}{5} e^{2 t}
$$

Q: How do we know what solutions look like?

Nice Result: Given a second-order, linear differential equation that is homogeneous with constant coefficients, all solutions are either of the form

